Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.911
Filtrar
1.
Molecules ; 29(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38611720

RESUMO

Many folding enzymes use separate domains for the binding of substrate proteins and for the catalysis of slow folding reactions such as prolyl isomerization. FKBP12 is a small prolyl isomerase without a chaperone domain. Its folding activity is low, but it could be increased by inserting the chaperone domain from the homolog SlyD of E. coli near the prolyl isomerase active site. We inserted two other chaperone domains into human FKBP12: the chaperone domain of SlpA from E. coli, and the chaperone domain of SlyD from Thermococcus sp. Both stabilized FKBP12 and greatly increased its folding activity. The insertion of these chaperone domains had no influence on the FKBP12 and the chaperone domain structure, as revealed by two crystal structures of the chimeric proteins. The relative domain orientations differ in the two crystal structures, presumably representing snapshots of a more open and a more closed conformation. Together with crystal structures from SlyD-like proteins, they suggest a path for how substrate proteins might be transferred from the chaperone domain to the prolyl isomerase domain.


Assuntos
Proteínas de Escherichia coli , Proteína 1A de Ligação a Tacrolimo , Humanos , Escherichia coli/genética , Chaperonas Moleculares , Peptidilprolil Isomerase/genética , Catálise
2.
Bioorg Chem ; 144: 107171, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325131

RESUMO

Pin1 (proline isomerase peptidyl-prolyl isomerase NIMA-interacting-1), as a member of PPIase family, catalyzes cis-trans isomerization of pThr/Ser-Pro amide bonds of its substrate proteins, further regulating cell proliferation, division, apoptosis, and transformation. Pin1 is overexpressed in various cancers and is positively correlated with tumor initiation and progression. Pin1 inhibition can effectively reduce tumor growth and cancer stem cell expansion, block metastatic spread, and restore chemosensitivity, suggesting that targeting Pin1 may be an effective strategy for cancer treatment. Considering the promising therapeutic effects of Pin1 inhibitors on cancers, we herein are intended to comprehensively summarize the reported Pin1 inhibitors, mainly highlighting their structures, biological functions and binding modes, in hope of providing a reference for the future drug discovery.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Peptidilprolil Isomerase/química , Peptidilprolil Isomerase/metabolismo , Neoplasias/tratamento farmacológico , Proliferação de Células
3.
Cell Death Dis ; 15(2): 147, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360722

RESUMO

Tamoxifen (TAM) is the frontline therapy for estrogen receptor-positive (ER+) breast cancer in premenopausal women that interrupts ER signaling. As tumors with elevated heterogeneity, amounts of ER-negative (ER-) cells are present in ER+ breast cancer that cannot be directly killed by TAM. Despite complete remissions have been achieved in clinical practice, the mechanism underlying the elimination of ER- cells during TAM treatment remains an open issue. Herein, we deciphered the elimination of ER- cells in TAM treatment from the perspective of the bystander effect. Markable reductions were observed in tumorigenesis of ER- breast cancer cells by applying both supernatants from TAM-treated ER+ cells and a transwell co-culture system, validating the presence of a TAM-induced bystander effect. The major antitumor protein derived from ER+ cells, peptidyl-prolyl cis-trans isomerase B (PPIB), is the mediator of the TAM-induced bystander effect identified by quantitative proteomics. The attenuation of ER- cells was attributed to activated BiP/eIF2α/CHOP axis and promoted endoplasmic reticulum stress (ERS)-induced apoptosis, which can also be triggered by PPIB independently. Altogether, our study revealed a novel TAM-induced bystander effect in TAM treatment of ER+ breast cancer, raising the possibility of developing PPIB as a synergistic antitumor agent or even substitute endocrine therapy.


Assuntos
Neoplasias da Mama , Efeito Espectador , Peptidilprolil Isomerase , Tamoxifeno , Feminino , Humanos , Antineoplásicos Hormonais/farmacologia , Apoptose , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Isoenzimas , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico
4.
Nat Commun ; 15(1): 40, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167292

RESUMO

The peptidyl-prolyl cis-trans isomerase Pin1 is a pivotal therapeutic target in cancers, but the regulation of Pin1 protein stability is largely unknown. High Pin1 expression is associated with SUMO1-modified protein hypersumoylation in glioma stem cells (GSCs), but the underlying mechanisms remain elusive. Here we demonstrate that Pin1 is deubiquitinated and stabilized by USP34, which promotes isomerization of the sole SUMO E2 enzyme Ubc9, leading to SUMO1-modified hypersumoylation to support GSC maintenance. Pin1 interacts with USP34, a deubiquitinase with preferential expression and oncogenic function in GSCs. Such interaction is facilitated by Plk1-mediated phosphorylation of Pin1. Disruption of USP34 or inhibition of Plk1 promotes poly-ubiquitination and degradation of Pin1. Furthermore, Pin1 isomerizes Ubc9 to upregulate Ubc9 thioester formation with SUMO1, which requires CDK1-mediated phosphorylation of Ubc9. Combined inhibition of Pin1 and CDK1 with sulfopin and RO3306 most effectively suppresses orthotopic tumor growth. Our findings provide multiple molecular targets to induce Pin1 degradation and suppress hypersumoylation for cancer treatment.


Assuntos
Glioma , Peptidilprolil Isomerase , Humanos , Peptidilprolil Isomerase de Interação com NIMA/genética , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Peptidilprolil Isomerase/genética , Peptidilprolil Isomerase/metabolismo , Sumoilação , Isomerismo , Fosforilação , Glioma/genética , Células-Tronco Neoplásicas/metabolismo , Proteases Específicas de Ubiquitina/metabolismo
5.
Cell Signal ; 115: 111041, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38199598

RESUMO

Pin1, a peptide prolyl cis-trans isomerase, is overexpressed and/or overactivated in many human malignancies. However, whether Pin1 regulates the immunosuppressive TME has not been well defined. In this study, we detected the effect of Pin1 on immune cells and immune checkpoint PD-L1 in the TME of CRC and explored the anti-tumor efficacy of Pin1 inhibitor ATRA combined with PD-1 antibody. We found that Pin1 facilitated the immunosuppressive TME by raising the proportion of myeloid-derived suppressor cells (MDSCs) and declining the percentage of CD8+ T cells and CD4+ T cells. Pin1 restrained PD-L1 protein expression in CRC cells and the effect was tempered by endoplasmic reticulum (ER) stress inducers. Mechanically, Pin1 overexpression decreased the stability of PD-L1 and promoted its degradation by mitigating ER stress. Silencing or inhibiting Pin1 promoted PD-L1 protein expression by inducing ER stress. Hence, Pin1 inhibitor ATRA enhanced the anti-tumor efficacy of PD-1 antibody in the CRC allograft by upregulating PD-L1. Our results reveal the critical and pleiotropic effects of Pin1 on managing the immune cells and immune checkpoint PD-L1 in the TME of CRC, providing a new promising candidate for combination with immunotherapy.


Assuntos
Antígeno B7-H1 , Neoplasias Colorretais , Humanos , Peptidilprolil Isomerase , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Receptor de Morte Celular Programada 1/metabolismo , Neoplasias Colorretais/patologia , Microambiente Tumoral
6.
Phys Chem Chem Phys ; 26(5): 4643-4656, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38251755

RESUMO

Pin1 (protein interacting with never-in-mitosis akinase-1) is a member of the family of peptidylprolyl cis-trans isomerases (PPIases) that specifically recognize and isomerize substrates containing phosphorylated Ser/Thr-Pro sequences. Pin1 is involved in many cellular processes and plays a key role in the cell cycle, transcriptional regulation, cell metabolism, proliferation and differentiation, and its abnormalities lead to degenerative and neoplastic diseases. Pin1 is highly expressed in human cancers and promotes the development of tumors by activating multiple oncogenes and inactivating multiple tumor suppressor genes, making it an attractive target for cancer therapy. In this study, we investigated the binding mechanism and conformational relationship between benzimidazole Pin1 inhibitors and Pin1 proteins by molecular docking, three-dimensional quantitative structure-activity relationship (3D-QSAR) modeling, binding free energy calculations and decomposition, and molecular dynamics simulations. Molecular docking and molecular dynamics simulations disclosed the most likely binding pose of benzimidazoles with the Pin1 protein. The results of 3D-QSAR modeling indicated that electrostatic fields, hydrophobic fields and hydrogen bonding play important roles in the binding process of inhibitors to proteins. The binding free energy calculations and energy decomposition indicated that Lys63, Arg69, Cys113, Leu122, Met130, and Ser154 may be key residues in the binding of benzimidazole-based inhibitors to the Pin1 protein. This study provides an important theoretical basis for the design and optimization of benzimidazole compounds.


Assuntos
Benzimidazóis , Simulação de Dinâmica Molecular , Humanos , Peptidilprolil Isomerase de Interação com NIMA , Simulação de Acoplamento Molecular , Peptidilprolil Isomerase/química , Peptidilprolil Isomerase/genética , Peptidilprolil Isomerase/metabolismo , Ligação Proteica
7.
Mol Cell Proteomics ; 23(2): 100715, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38216124

RESUMO

Mammalian cells possess intrinsic mechanisms to prevent tumorigenesis upon deleterious mutations, including oncogene-induced senescence (OIS). The molecular mechanisms underlying OIS are, however, complex and remain to be fully characterized. In this study, we analyzed the changes in the nuclear proteome and phosphoproteome of human lung fibroblast IMR90 cells during the progression of OIS induced by oncogenic RASG12V activation. We found that most of the differentially regulated phosphosites during OIS contained prolyl isomerase PIN1 target motifs, suggesting PIN1 is a key regulator of several promyelocytic leukemia nuclear body proteins, specifically regulating several proteins upon oncogenic Ras activation. We showed that PIN1 knockdown promotes cell proliferation, while diminishing the senescence phenotype and hallmarks of senescence, including p21, p16, and p53 with concomitant accumulation of the protein PML and the dysregulation of promyelocytic leukemia nuclear body formation. Collectively, our data demonstrate that PIN1 plays an important role as a tumor suppressor in response to oncogenic ER:RasG12V activation.


Assuntos
Peptidilprolil Isomerase , Proteoma , Animais , Humanos , Peptidilprolil Isomerase/genética , Peptidilprolil Isomerase/metabolismo , Proteoma/metabolismo , Fatores de Transcrição/metabolismo , Fibroblastos/metabolismo , Oncogenes , Peptidilprolil Isomerase de Interação com NIMA/genética , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Senescência Celular/fisiologia , Mamíferos/metabolismo
8.
Curr Opin Struct Biol ; 84: 102739, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38061261

RESUMO

Tau is an intrinsically disordered protein found abundantly in axons, where it binds to microtubules. Since tau is a central player in the dynamic microtubule network, it is highly regulated by post-translational modifications. Abnormal hyperphosphorylation and aggregation of tau characterize a group of diseases called tauopathies. A specific protein family of cis/trans peptidyl-prolyl isomerases (PPIases) can interact with tau to regulate its aggregation and neuronal resilience. Structural interactions between tau and specific PPIases have been determined, establishing possible mechanisms for tau regulation and modification. While there have been numerous in vivo studies evaluating the impact of PPIase expression on tau biology/pathology, the direct roles of PPIases have yet to be fully characterized. Different PPIases correlate to either increased or decreased levels of tau-associated degeneration. Therefore, the ability of PPIases to structurally modify and regulate tau should be further investigated due to its potential therapeutic implications for Alzheimer's disease and other tauopathies.


Assuntos
Doença de Alzheimer , Tauopatias , Humanos , Peptidilprolil Isomerase/química , Doença de Alzheimer/metabolismo , Tauopatias/tratamento farmacológico , Tauopatias/metabolismo , Processamento de Proteína Pós-Traducional
9.
Plant Physiol ; 194(3): 1631-1645, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38039102

RESUMO

PSI is a sophisticated photosynthesis protein complex that fuels the light reaction of photosynthesis in algae and vascular plants. While the structure and function of PSI have been studied extensively, the dynamic regulation on PSI oligomerization and high light response is less understood. In this work, we characterized a high light-responsive immunophilin gene FKB20-2 (FK506-binding protein 20-2) required for PSI oligomerization and high light tolerance in Chlamydomonas (Chlamydomonas reinhardtii). Biochemical assays and 77-K fluorescence measurement showed that loss of FKB20-2 led to the reduced accumulation of PSI core subunits and abnormal oligomerization of PSI complexes and, particularly, reduced PSI intermediate complexes in fkb20-2. It is noteworthy that the abnormal PSI oligomerization was observed in fkb20-2 even under dark and dim light growth conditions. Coimmunoprecipitation, MS, and yeast 2-hybrid assay revealed that FKB20-2 directly interacted with the low molecular weight PSI subunit PsaG, which might be involved in the dynamic regulation of PSI-light-harvesting complex I supercomplexes. Moreover, abnormal PSI oligomerization caused accelerated photodamage to PSII in fkb20-2 under high light stress. Together, we demonstrated that immunophilin FKB20-2 affects PSI oligomerization probably by interacting with PsaG and plays pivotal roles during Chlamydomonas tolerance to high light.


Assuntos
Chlamydomonas reinhardtii , Chlamydomonas , Imunofilinas , Complexo de Proteína do Fotossistema I/genética , Chlamydomonas/genética , Peptidilprolil Isomerase , Chlamydomonas reinhardtii/genética
10.
Nat Microbiol ; 9(1): 70-84, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38082149

RESUMO

Interbacterial antagonism and associated defensive strategies are both essential during bacterial competition. The human gut symbiont Bacteroides fragilis secretes a ubiquitin homologue (BfUbb) that is toxic to a subset of B. fragilis strains in vitro. In the present study, we demonstrate that BfUbb lyses certain B. fragilis strains by non-covalently binding and inactivating an essential peptidyl-prolyl isomerase (PPIase). BfUbb-sensitivity profiling of B. fragilis strains revealed a key tyrosine residue (Tyr119) in the PPIase and strains that encode a glutamic acid residue at Tyr119 are resistant to BfUbb. Crystal structural analysis and functional studies of BfUbb and the BfUbb-PPIase complex uncover a unique disulfide bond at the carboxy terminus of BfUbb to mediate the interaction with Tyr119 of the PPIase. In vitro coculture assays and mouse studies show that BfUbb confers a competitive advantage for encoding strains and this is further supported by human gut metagenome analyses. Our findings reveal a previously undescribed mechanism of bacterial intraspecies competition.


Assuntos
Infecções Bacterianas , Microbioma Gastrointestinal , Humanos , Animais , Camundongos , Bacteroides fragilis/genética , Ubiquitina/metabolismo , Bactérias/metabolismo , Peptidilprolil Isomerase/metabolismo
11.
Cell Signal ; 113: 110940, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38084839

RESUMO

Pin1-directed prolyl isomerization is a central common oncogenic mechanism to drive tumorigenic processes. However, the role of Pin1 in cellular autophagy is still poorly understood. Here we report that pharmacological inhibition of Pin1 decreased the formation of autophagosome/autolysosomes upon nutrient starvation. Inhibition of Pin1 reduced, whereas forced expression of Pin1 increased, the level of LC3 and viability of U2OS and PANC-1 cells. Pin1 could augment the accumulation of LC3 upon chloroquine treatment, while chloroquine also disturbed its function on cell viability. RNA-Seq and qPCR identified altered autophagic pathway upon Pin1 silencing. Mechanistically, FoxO3 was identified critical for Pin1-mediated autophagy. Knockdown of FoxO3 could rescue the changes of LC3 level and cellular viability caused by Pin1 overexpression. In xenograft mouse model, Pin1 reduced the sensitivity of PANC-1 to chloroquine while FoxO3 silencing could inhibit Pin1's function. Moreover, Pin1 could bind FoxO3 via its pS284-P motif, reduce its phosphorylation at T32, facilitate its nuclear retention, and therefore increased its transcriptional activity. S284A mutation of FoxO3 interfered with its T32 phosphorylation, reduced its nuclear localization and disrupted its function to support cell viability upon nutrient starvation. Furthermore, the protein level of Pin1 positively correlated with FoxO3 nuclear localization and LC3 level in pancreatic adenocarcinoma and osteosarcoma samples. Together, this study highlights an important role for Pin1-FoxO3 axis in regulating autophagy and cancer cell viability. Intervening in the Pin1-FoxO3 interaction would serve as an effective therapeutic strategy and the pS284-P motif of FoxO3 provides a potential target for drug design.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Autofagia , Sobrevivência Celular , Cloroquina/farmacologia , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/farmacologia , Peptidilprolil Isomerase , Fosforilação
12.
Bone Res ; 11(1): 64, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097598

RESUMO

Given afferent functions, sensory nerves have recently been found to exert efferent effects and directly alter organ physiology. Additionally, several studies have highlighted the indirect but crucial role of sensory nerves in the regulation of the physiological function of osteoclasts. Nonetheless, evidence regarding the direct sensory nerve efferent influence on osteoclasts is lacking. In the current study, we found that high levels of efferent signals were transported directly from the sensory nerves into osteoclasts. Furthermore, sensory hypersensitivity significantly increased osteoclastic bone resorption, and sensory neurons (SNs) directly promoted osteoclastogenesis in an in vitro coculture system. Moreover, we screened a novel neuropeptide, Cyp40, using an isobaric tag for relative and absolute quantitation (iTRAQ). We observed that Cyp40 is the efferent signal from sensory nerves, and it plays a critical role in osteoclastogenesis via the aryl hydrocarbon receptor (AhR)-Ras/Raf-p-Erk-NFATc1 pathway. These findings revealed a novel mechanism regarding the influence of sensory nerves on bone regulation, i.e., a direct promoting effect on osteoclastogenesis by the secretion of Cyp40. Therefore, inhibiting Cyp40 could serve as a strategy to improve bone quality in osteoporosis and promote bone repair after bone injury.


Assuntos
Reabsorção Óssea , Osteogênese , Humanos , Peptidilprolil Isomerase/metabolismo , Osteoclastos/metabolismo , Reabsorção Óssea/metabolismo
13.
Sci Rep ; 13(1): 19116, 2023 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-37926757

RESUMO

Gastric cancer (GC) is a malignant tumor with high incidence rate and mortality. Due to the lack of effective diagnostic indicators, most patients are diagnosed in late stage and have a poor prognosis. An increasing number of studies have proved that Peptidylprolyl isomerase A (PPIA) can play an oncogene role in various cancer types. However, the precise mechanism of PPIA in GC is still unclear. Herein, we analyzed the mRNA levels of PPIA in pan-cancer. The prognostic value of PPIA on GC was also evaluated using multiple databases. Additionally, the relationship between PPIA expression and clinical factors in GC was also examined. We further confirmed that PPIA expression was not affected by genetic alteration and DNA methylation. Moreover, the upstream regulator miRNA and lncRNA of PPIA were identified, which suggested that LINC10232/miRNA-204-5p/PPIA axis might act as a potential biological pathway in GC. Finally, this study revealed that PPIA was negatively correlated with immune checkpoint expression, immune cell biomarkers, and immune cell infiltration in GC.


Assuntos
MicroRNAs , Peptidilprolil Isomerase , Neoplasias Gástricas , Humanos , Carcinogênese/genética , Biologia Computacional , MicroRNAs/genética , Peptidilprolil Isomerase/metabolismo , Prognóstico , Neoplasias Gástricas/patologia
14.
Microbiol Spectr ; 11(6): e0228123, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37855596

RESUMO

IMPORTANCE: Decreasing the camptothecin productivity by fungi with storage and subculturing is the challenge that halts their further implementation to be an industrial platform for camptothecin (CPT) production. The highest differentially abundant proteins were Pleckstrin homology (PH) domain-containing proteins and Peptidyl-prolyl cis/trans isomerase that fluctuated with the subculturing of A. terreus with a remarkable relation to CPT biosynthesis and restored with addition of F. elastica microbiome.


Assuntos
Domínios de Homologia à Plecstrina , Proteômica , Peptidilprolil Isomerase , Camptotecina
15.
Int J Mol Sci ; 24(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37894834

RESUMO

Mutations in the FKBP14 gene encoding the endoplasmic reticulum resident collagen-related proline isomerase FK506 binding protein 22 kDa (FKBP22) result in kyphoscoliotic Ehlers-Danlos Syndrome (EDS), which is characterized by a broad phenotypic outcome. A plausible explanation for this outcome is that FKBP22 participates in the biosynthesis of subsets of collagen types: FKBP22 selectively binds to collagens III, IV, VI, and X, but not to collagens I, II, V, and XI. However, these binding mechanisms have never been explored, and they may underpin EDS subtype heterogeneity. Here, we used collagen Toolkit peptide libraries to investigate binding specificity. We observed that FKBP22 binding was distributed along the collagen helix. Further, it (1) was higher on collagen III than collagen II peptides and it (2) was correlated with a positive peptide charge. These findings begin to elucidate the mechanism by which FKBP22 interacts with collagen.


Assuntos
Síndrome de Ehlers-Danlos , Proteínas de Ligação a Tacrolimo , Humanos , Proteínas de Ligação a Tacrolimo/metabolismo , Colágeno/genética , Peptidilprolil Isomerase/genética , Mutação , Síndrome de Ehlers-Danlos/genética
16.
Zhen Ci Yan Jiu ; 48(10): 1009-1016, 2023 Oct 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-37879951

RESUMO

OBJECTIVES: To observe the effects of electroacupuncture (EA) on motor function, expression of extracellular cyclophile A(PPIA) and PPIA/nuclear factor-κB (NF-κB) signaling pathway in spinal cord of amyotrophic la-teral sclerosis (ALS) mice, so as to explore the mechanism of EA intervention in regulating extracellular PPIA on neuroinflammation in ALS mice. METHODS: Thirty ALS-SOD1G93A mice with hSOD1-G93A gene were randomly divided into model, EA and Riluzole groups , with 10 mice in each group, and other 10 ALS-SOD1G93A negative mice were used as the blank group. EA was applied to bilateral "Yanglingquan"(GB34) and "Zusanli"(ST36) for 20 min once daily, 5 days a week for 2 weeks. In the Riluzole group, riluzole solution (30 mg·kg-1·d-1) was administrated intragastrically, and the treatment time was the same as that in the EA group.Rotating rod experiment and open field experiment were used to evaluate the changes in motor function of mice .The morphology of motor neurons in the anterior horn of spinal cord was observed by HE staining.The relative protein expression levels of PPIA, TDP-43 and NF-κB in the spinal cord were detected by Western blot.The positive expression level of TDP-43 in the spinal cord was detected by immunohistochemistry. The positive expression level of PPIA in spinal cord was marked by immunofluorescence. Serum PPIA content was determined by ELISA. RESULTS: Compared with the blank group, the time of rod dropping and the total distance of open field movement in the model group were shortened (P<0.01), the number of motor neurons in the anterior horn of the spinal cord was reduced, the cell morphology was incomplete, the cell body was atrophied, the protein expression and positive expression of TDP-43 were increased (P<0.01), the protein expressions of PPIA and NF-κB in the spinal cord were increased(P<0.01), the serum content of PPIA and immunofluorescence expression of PPIA in spinal cord were increased (P<0.01). Compared with the model group, the time of rod dropping and the total distance of open field movement of mice in the EA group and the Riluzole group were prolonged (P<0.05, P<0.01), and the injury of motor neuron in the anterior horn of the spinal cord was decreased, the protein expression and positive expression of TDP-43 in the spinal cord were decreased (P<0.05, P<0.01);the relative expression levels of PPIA and NF-κB proteins were decreased (P<0.05, P<0.01), and the content of PPIA in serum and the immunofluorescence expression of PPIA in the spinal cord were decreased (P<0.05, P<0.01) in the EA group;the relative protein expression of NF-κB and fluorescence expression of PPIA in spinal cord of mice in the Riluzole group were decreased (P<0.05). CONCLUSIONS: EA intervention can improve motor function in ALS mice, and its mechanism may be related to the inhibition of PPIA/NF-κB signaling pathway by EA to alleviating neuroinflammatory response.


Assuntos
Esclerose Amiotrófica Lateral , Eletroacupuntura , Animais , Camundongos , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/terapia , Esclerose Amiotrófica Lateral/metabolismo , Proteínas de Ligação a DNA/metabolismo , Neurônios Motores/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Riluzol , Transdução de Sinais , Medula Espinal , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Peptidilprolil Isomerase/metabolismo
17.
Sci Rep ; 13(1): 17433, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833355

RESUMO

Penicillium species are an industrially important group of fungi. Cyclophilins are ubiquitous proteins and several members of this family exhibit peptidyl-prolyl cis-trans isomerase (PPIase) activity. We had earlier demonstrated that the salt-induced PPIase activity in a halotolerant strain of P. oxalicum was associated with enhanced expression of a cyclophilin gene, PoxCYP18. Cloning and characterization of PoxCYP18 revealed that its cDNA consists of 522 bp encoding a protein of 173 amino acid residues, with predicted molecular mass and pI values of 18.91 kDa and 8.87, respectively. The recombinant PoxCYP18 can catalyze cis-trans isomerization of peptidyl-prolyl bond with a catalytic efficiency of 1.46 × 107 M-1 s-1 and is inhibited specifically only by cyclosporin A, with an inhibition constant of 5.04 ± 1.13 nM. PoxCYP18 consists of two cysteine residues at positions - 45 and - 170, and loses its activity under oxidizing conditions. Substitution of these residues alone or together by site-directed mutagenesis revealed that the PPIase activity of PoxCYP18 is regulated through a redox mechanism involving the formation of disulfide linkages. Heterologous expression of PoxCYP18 conferred enhanced tolerance to salt stress in transgenic E. coli cells, implying that this protein imparts protection to cellular processes against salt-induced damage.


Assuntos
Ciclofilinas , Penicillium , Ciclofilinas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Peptidilprolil Isomerase/genética , Penicillium/genética , Penicillium/metabolismo , Ciclosporina/farmacologia
18.
J Pediatric Infect Dis Soc ; 12(10): 525-533, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37738566

RESUMO

BACKGROUND: Congenital cytomegalovirus (cCMV) infection is a leading cause of nonhereditary neurological complications. When considering antiviral treatment, it is important to differentiate between symptomatic and asymptomatic patients. This study aimed to identify candidate plasma biomarkers for neurological complications of cCMV infection using proteomic analysis. METHODS: This study retrospectively enrolled five patients with symptomatic cCMV infection, four with asymptomatic cCMV infection with isolated sensorineural hearing loss (SNHL), and five with asymptomatic cCMV infection. The plasma samples were collected during neonatal period. The peptides were analyzed using liquid chromatography-mass spectrometry. The concentrations of differentially expressed proteins were validated using an enzyme-linked immunosorbent assay. RESULTS: A total of 456 proteins were identified and quantified. The levels of 80 proteins were significantly different between patients with and without cCMV-related symptoms including isolated SNHL. The levels of 31 proteins were significantly different between patients with and without neuroimaging abnormalities. The plasma concentrations of Fms-related receptor tyrosine kinase 4 in patients with cCMV-related symptoms were significantly higher than those in patients with asymptomatic cCMV infection. Moreover, plasma peptidylprolyl isomerase A levels were significantly higher in patients with neuroimaging abnormalities than in those without. CONCLUSIONS: Proteomic analysis of patients with cCMV infection showed that Fms-related receptor tyrosine kinase 4 and peptidylprolyl isomerase A could be novel diagnostic biomarkers for neurological complications of cCMV infection.


Assuntos
Infecções por Citomegalovirus , Perda Auditiva Neurossensorial , Recém-Nascido , Humanos , Lactente , Citomegalovirus , Estudos Retrospectivos , Proteômica , Infecções por Citomegalovirus/congênito , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/etiologia , Biomarcadores , Peptidilprolil Isomerase , Proteínas Tirosina Quinases
19.
Genes (Basel) ; 14(8)2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37628584

RESUMO

Interferon-stimulated genes (ISG) and microRNA (miRNA) present in maternal circulation have been reported to be diagnostic of pregnancy in cattle prior to day (d)30 of gestation. The objective of this study was to assess specific ISG and miRNA abundance on d 18 of gestation. Cattle were subjected to estrous synchronization and artificially inseminated to a single Angus sire. At time of insemination (d 0) and d 18 post-insemination, blood was collected and total RNA isolated. Differential abundance (DA) in specific ISG and miRNA between d 0 and d 18 samples in pregnant (n = 10) and open (n = 10) cows were assessed via RT-qPCR. The relative Ct values were normalized using abundance of cyclophilin or the geometric mean of specific miRNA for the ISG and miRNA genes of interest, respectively. The DA of the ISG were increased due to pregnancy (p < 0.05); however, there was no expected day of gestation by pregnancy interaction. Relative abundance of Bta-miR-16 increased on d18 regardless of pregnancy status (p < 0.05). None of the miRNA evaluated in this study were associated with pregnancy status. These data indicate that certain ISG may serve as early indicators of pregnancy in cattle, but abundance of the miRNA does not.


Assuntos
MicroRNA Circulante , MicroRNAs , Feminino , Animais , Bovinos , Gravidez , MicroRNA Circulante/genética , Interferons/genética , MicroRNAs/genética , Estro , Peptidilprolil Isomerase
20.
Virulence ; 14(1): 2249779, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37641974

RESUMO

Streptococcus suis type 2 (SS2), a major emerging/re-emerging zoonotic pathogen found in humans and pigs, can cause severe clinical infections, and pose public health issues. Our previous studies recognized peptidyl-prolyl isomerase (PrsA) as a critical virulence factor promoting SS2 pathogenicity. PrsA contributed to cell death and operated as a pro-inflammatory effector. However, the molecular pathways through which PrsA contributes to cell death are poorly understood. Here in this study, we prepared the recombinant PrsA protein and found that pyroptosis and necroptosis were involved in cell death stimulated by PrsA. Specific pyroptosis and necroptosis signalling inhibitors could significantly alleviate the fatal effect. Cleaved caspase-1 and IL-1ß in pyroptosis with phosphorylated MLKL proteins in necroptosis pathways, respectively, were activated after PrsA stimulation. Truncated protein fragments of enzymatic PPIase domain (PPI), N-terminal (NP), and C-terminal (PC) domains fused with PPIase, were expressed and purified. PrsA flanking N- or C-terminal but not enzymatic PPIase domain was found to be critical for PrsA function in inducing cell death and inflammation. Additionally, PrsA protein could be anchored on the cell surface to interact with host cells. However, Toll-like receptor 2 (TLR2) was not implicated in cell death and recognition of PrsA. PAMPs of PrsA could not promote TLR2 activation, and no rescued phenotypes of death were shown in cells blocking of TLR2 receptor or signal-transducing adaptor of MyD88. Overall, these data, for the first time, advanced our perspective on PrsA function and elucidated that PrsA-induced cell death requires its flanking N- or C-terminal domain but is dispensable for recognizing TLR2. Further efforts are still needed to explore the precise molecular mechanisms of PrsA-inducing cell death and, therefore, contribution to SS2 pathogenicity.


Assuntos
Proteínas de Bactérias , Infecções Estreptocócicas , Streptococcus suis , Receptor 2 Toll-Like , Animais , Humanos , Morte Celular , Peptidilprolil Isomerase , Piroptose , Streptococcus suis/genética , Suínos , Receptor 2 Toll-Like/genética , Proteínas de Bactérias/metabolismo , Infecções Estreptocócicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...